Die ARIMA-Modelle sind in der Theorie die allgemeinste Klasse von Modellen für die Prognose einer Zeitreihe, die durch Differenzierung (falls nötig) vielleicht 8220 stationär gemacht werden kann8221. ARIMA (p, d, q) In Verbindung mit nichtlinearen Transformationen, wie zB Protokollierung oder Abscheidung (falls erforderlich). Eine Zufallsvariable, die eine Zeitreihe ist, ist stationär, wenn ihre statistischen Eigenschaften alle über die Zeit konstant sind. Eine stationäre Reihe hat keinen Trend, ihre Variationen um ihren Mittelwert haben eine konstante Amplitude, und sie wackelt in einer konsistenten Weise. D. h. seine kurzzeitigen Zufallszeitmuster sehen immer im statistischen Sinne gleich aus. Die letztgenannte Bedingung bedeutet, daß ihre Autokorrelationen (Korrelationen mit ihren eigenen vorherigen Abweichungen vom Mittelwert) über die Zeit konstant bleiben oder daß ihr Leistungsspektrum über die Zeit konstant bleibt. Eine zufällige Variable dieser Form kann (wie üblich) als eine Kombination von Signal und Rauschen betrachtet werden, und das Signal (wenn eines offensichtlich ist) könnte ein Muster einer schnellen oder langsamen mittleren Reversion oder einer sinusförmigen Oszillation oder eines schnellen Wechsels im Vorzeichen sein , Und es könnte auch eine saisonale Komponente. Ein ARIMA-Modell kann als ein 8220filter8221 betrachtet werden, der versucht, das Signal vom Rauschen zu trennen, und das Signal wird dann in die Zukunft extrapoliert, um Prognosen zu erhalten. Die ARIMA-Vorhersagegleichung für eine stationäre Zeitreihe ist eine lineare (d. h. Regressionstyp) Gleichung, bei der die Prädiktoren aus Verzögerungen der abhängigen Variablen und oder Verzögerungen der Prognosefehler bestehen. Das heißt: Vorhergesagter Wert von Y eine Konstante und oder eine gewichtete Summe aus einem oder mehreren neuen Werten von Y und oder einer gewichteten Summe aus einem oder mehreren neuen Werten der Fehler. Wenn die Prädiktoren nur aus verzögerten Werten von Y bestehen, handelt es sich um ein reines autoregressives Modell (8220 selbst-regressed8221), das nur ein Spezialfall eines Regressionsmodells ist und mit einer Standard-Regressions-Software ausgestattet werden kann. Beispielsweise ist ein autoregressives Modell erster Ordnung (8220AR (1) 8221) für Y ein einfaches Regressionsmodell, bei dem die unabhängige Variable nur um eine Periode (LAG (Y, 1) in Statgraphics oder YLAG1 in RegressIt) verzögert ist. Wenn einige der Prädiktoren Verzögerungen der Fehler sind, handelt es sich bei einem ARIMA-Modell nicht um ein lineares Regressionsmodell, da es keine Möglichkeit gibt, 8220last period8217s error8221 als eine unabhängige Variable festzulegen: Die Fehler müssen auf einer Periodenperiode berechnet werden Wenn das Modell an die Daten angepasst ist. Aus technischer Sicht ist das Problem der Verwendung von verzögerten Fehlern als Prädiktoren, dass die Vorhersagen von model8217s keine linearen Funktionen der Koeffizienten sind. Obwohl es sich um lineare Funktionen der vergangenen Daten handelt. Daher müssen Koeffizienten in ARIMA-Modellen, die verzögerte Fehler enthalten, durch nichtlineare Optimierungsmethoden (8220hill-climbing8221) abgeschätzt werden, anstatt nur ein Gleichungssystem zu lösen. Das Akronym ARIMA steht für Auto-Regressive Integrated Moving Average. Verzögerungen der stationären Reihe in der Prognose-Gleichung werden als autoregressiveQuot-Terme bezeichnet, die Verzögerungen der Prognosefehler werden als mittlere mittlere quot-Terme bezeichnet, und eine Zeitreihe, die differenziert werden muß, um stationär gemacht zu werden, wird als eine integrierte quotierte Version einer stationären Reihe bezeichnet. Random-walk und random-trend Modelle, autoregressive Modelle und exponentielle Glättungsmodelle sind alle Sonderfälle von ARIMA Modellen. Ein nicht seasonales ARIMA-Modell wird als ein quotarIMA-Modell (p, d, q) klassifiziert, wobei p die Anzahl der autoregressiven Terme ist, d die Anzahl der für die Stationarität benötigten Nicht-Seasonal-Differenzen und q die Anzahl der verzögerten Prognosefehler ist Die Vorhersagegleichung. Die Vorhersagegleichung ist wie folgt aufgebaut. Zuerst bezeichne y die d - te Differenz von Y. Das bedeutet, daß die zweite Differenz von Y (der Fall d2) nicht die Differenz von 2 Perioden ist. Es ist vielmehr die erste Differenz der ersten Differenz. Was das diskrete Analogon einer zweiten Ableitung ist, d. h. die lokale Beschleunigung der Reihe anstatt ihres lokalen Takts. In Bezug auf y. Ist die allgemeine Prognosegleichung: Hier sind die gleitenden Durchschnittsparameter (9528217s) so definiert, daß ihre Vorzeichen in der Gleichung negativ sind, und zwar nach der Konvention von Box und Jenkins. Einige Autoren und Software (einschließlich der Programmiersprache R) definieren sie so, dass sie stattdessen Pluszeichen haben. Wenn tatsächliche Zahlen in die Gleichung gesteckt werden, gibt es keine Mehrdeutigkeit, aber es ist wichtig zu wissen, welche Konvention Ihre Software verwendet, wenn Sie die Ausgabe lesen. Oft werden dort die Parameter mit AR (1), AR (2), 8230 und MA (1), MA (2), 8230 usw. bezeichnet. Um das entsprechende ARIMA-Modell für Y zu identifizieren, beginnt man die Reihenfolge der Differenzierung zu bestimmen (D) Notwendigkeit, die Serie zu stationarisieren und die Brutto-Merkmale der Saisonalität zu entfernen, möglicherweise in Verbindung mit einer variationsstabilisierenden Transformation, wie z. B. Protokollierung oder Entleerung. Wenn Sie an diesem Punkt anhalten und voraussagen, dass die differenzierten Serien konstant sind, haben Sie lediglich ein zufälliges oder zufälliges Trendmodell platziert. Die stationäre Reihe kann jedoch noch autokorrelierte Fehler aufweisen, was nahe legt, daß in der Vorhersagegleichung auch eine Anzahl von AR-Terme (p 8805 1) und / oder einige MA-MA-Terme (q 8805 1) benötigt werden. Der Prozess der Bestimmung der Werte von p, d und q, die für eine gegebene Zeitreihe am besten sind, werden in späteren Abschnitten der Notizen (deren Links oben auf dieser Seite sind), aber eine Vorschau von einigen der Typen erörtert Von nicht-saisonalen ARIMA-Modellen, die üblicherweise angetroffen werden, ist unten angegeben. ARIMA (1,0,0) erstes autoregressives Modell: Wenn die Serie stationär und autokorreliert ist, kann sie vielleicht als ein Vielfaches ihres eigenen vorherigen Wertes plus einer Konstante vorhergesagt werden. Die Prognose-Gleichung ist in diesem Fall 8230, die Y auf sich selbst zurückgeblieben um eine Periode zurückgeblieben ist. Dies ist ein 8220ARIMA (1,0,0) constant8221 Modell. Wenn der Mittelwert von Y Null ist, dann würde der konstante Term nicht eingeschlossen werden. Wenn der Steigungskoeffizient 981 & sub1; positiv und kleiner als 1 in der Grße ist (er muß kleiner als 1 in der Grße sein, wenn Y stationär ist), beschreibt das Modell ein Mittelrücksetzverhalten, bei dem der nächste Periodenblockwert 981 1 mal als vorhergesagt werden sollte Weit weg vom Durchschnitt, wie dieser Zeitraum8217s Wert. Wenn 981 & sub1; negativ ist, prognostiziert es ein Mittelwert-Wiederherstellungsverhalten mit einer Veränderung von Vorzeichen, d. h. es sagt auch voraus, daß Y unterhalb der mittleren nächsten Periode liegt, wenn sie über dem Mittel dieser Periode liegt. In einem autoregressiven Modell zweiter Ordnung (ARIMA (2,0,0)), würde es auch einen Yt-2-Term auf der rechten Seite geben, und so weiter. Abhängig von den Zeichen und Größen der Koeffizienten kann ein ARIMA (2,0,0) - Modell ein System beschreiben, dessen mittlere Reversion sinusförmig oszillierend erfolgt, wie die Bewegung einer Masse auf einer Feder, die zufälligen Schocks ausgesetzt ist . ARIMA (0,1,0) zufälliger Weg: Wenn die Reihe Y nicht stationär ist, ist das einfachste Modell für sie ein zufälliges Wandermodell, das als Grenzfall eines AR (1) - Modells betrachtet werden kann, in dem die autoregressive Koeffizient ist gleich 1, dh eine Reihe mit unendlich langsamer mittlerer Reversion. Die Vorhersagegleichung für dieses Modell kann folgendermaßen geschrieben werden: wobei der konstante Term die mittlere Periodenperiodenänderung (dh die Langzeitdrift) in Y ist. Dieses Modell könnte als ein No-Intercept-Regressionsmodell angepasst werden, in dem die Die erste Differenz von Y ist die abhängige Variable. Da es nur einen nicht sonderbaren Unterschied und einen konstanten Term enthält, wird er als quotarima (0,1,0) - Modell mit constant. quot klassifiziert. Das random-walk-ohne - driftmodell wäre ein ARIMA (0,1, 0) - Modell ohne konstantes ARIMA (1,1,0) differenziertes autoregressives Modell erster Ordnung: Wenn die Fehler eines Zufallswegmodells autokorreliert werden, kann das Problem möglicherweise durch Hinzufügen einer Verzögerung der abhängigen Variablen zu der Vorhersagegleichung - - ie Durch Rückgang der ersten Differenz von Y auf sich selbst verzögert um eine Periode. Dies würde die folgende Vorhersagegleichung ergeben, die umgeordnet werden kann: Dies ist ein autoregressives Modell erster Ordnung mit einer Ordnung der Nichtsaisonaldifferenzierung und einem konstanten Term - d. e. Ein ARIMA (1,1,0) - Modell. ARIMA (0,1,1) ohne konstante einfache exponentielle Glättung: Eine weitere Strategie zur Korrektur autokorrelierter Fehler in einem Random-Walk-Modell wird durch das einfache exponentielle Glättungsmodell vorgeschlagen. Es sei daran erinnert, dass für einige nichtstationäre Zeitreihen (z. B. diejenigen, die geräuschschwankungen um einen langsam variierenden Mittelwert aufweisen) das Zufallswegmodell nicht ebenso gut funktioniert wie ein gleitender Durchschnitt von vergangenen Werten. Mit anderen Worten, anstatt die letzte Beobachtung als Prognose der nächsten Beobachtung zu nehmen, ist es besser, einen Durchschnitt der letzten Beobachtungen zu verwenden, um das Rauschen herauszufiltern und das lokale Mittel genauer zu schätzen. Das einfache exponentielle Glättungsmodell verwendet einen exponentiell gewichteten gleitenden Durchschnitt vergangener Werte, um diesen Effekt zu erzielen. Die Vorhersagegleichung für das einfache exponentielle Glättungsmodell kann in einer Anzahl mathematisch äquivalenter Formen geschrieben werden. Von denen eine die sogenannte 8220-Fehlerkorrektur8221-Form ist, in der die vorhergehende Prognose in der Richtung ihres Fehlers angepasst wird: Weil e t-1 Y t-1 - 374 t-1 per Definition umgeschrieben werden kann : Es handelt sich um eine ARIMA (0,1,1) - konstante Vorhersagegleichung mit 952 1 1 - 945. Dies bedeutet, dass Sie eine einfache exponentielle Glättung durch Angabe als ARIMA (0,1,1) Modell ohne passen können Konstant und der geschätzte MA (1) - Koeffizient entspricht 1-minus-alpha in der SES-Formel. Denken Sie daran, dass im SES-Modell das durchschnittliche Alter der Daten in den 1-Periodenprognosen 1 945 beträgt, was bedeutet, dass sie tendenziell hinter Trends oder Wendepunkten um etwa 1 945 Perioden zurückbleiben werden. Daraus folgt, dass das Durchschnittsalter der Daten in den 1-Periodenprognosen eines ARIMA-Modells (0,1,1) ohne Konstante 1 (1 - 952 1) ist. Wenn beispielsweise 952 1 0,8 beträgt, ist das Durchschnittsalter 5. Da sich 952 1 1 nähert, wird das ARIMA-Modell (0,1,1) ohne Konstante zu einem sehr langfristigen gleitenden Durchschnitt und als 952 1 Ansätze 0 wird es ein random-walk-ohne-Drift-Modell. What8217s der beste Weg, um Autokorrelation zu korrigieren: Hinzufügen von AR-Begriffe oder Hinzufügen von MA-Begriffen In den vorherigen beiden Modellen, die oben diskutiert wurden, wurde das Problem der autokorrelierten Fehler in einem zufälligen Fußmodell auf zwei verschiedene Arten behoben: durch Hinzufügen eines Verzögerungswertes der differenzierten Reihe Auf die Gleichung oder das Hinzufügen eines verzögerten Wertes des Prognosefehlers. Welcher Ansatz am besten ist Eine Regel für diese Situation, die später noch ausführlicher diskutiert wird, besteht darin, dass die positive Autokorrelation normalerweise am besten durch Hinzufügen eines AR-Terms zum Modell behandelt wird und negative Autokorrelation in der Regel am besten durch Hinzufügen eines MA-Semester. In der Wirtschafts - und Wirtschaftszeitreihe entsteht häufig eine negative Autokorrelation als Artefakt der Differenzierung. (Im allgemeinen differenziert die Differenzierung die positive Autokorrelation und kann sogar einen Wechsel von positiver zu negativer Autokorrelation bewirken.) Daher wird das ARIMA (0,1,1) - Modell, in dem die Differenzierung von einem MA-Begriff begleitet wird, häufiger verwendet als ein ARIMA (1,1,0) - Modell. ARIMA (0,1,1) mit konstanter einfacher exponentieller Glättung mit Wachstum: Durch die Implementierung des SES-Modells als ARIMA-Modell gewinnen Sie tatsächlich etwas Flexibilität. Zunächst darf der geschätzte MA (1) - Koeffizient negativ sein. Dies entspricht einem Glättungsfaktor größer als 1 in einem SES-Modell, das nach dem SES-Modellanpassungsverfahren meist nicht zulässig ist. Zweitens haben Sie die Möglichkeit, einen konstanten Begriff in das ARIMA-Modell aufzunehmen, wenn Sie es wünschen, um einen durchschnittlichen Trend, der nicht Null ist, abzuschätzen. Das Modell ARIMA (0,1,1) mit Konstante hat die Vorhersagegleichung: Die Ein-Perioden-Prognosen aus diesem Modell sind qualitativ denjenigen des SES-Modells ähnlich, mit der Ausnahme, dass die Trajektorie der Langzeitprognosen typischerweise a ist (Deren Neigung gleich mu ist) und nicht eine horizontale Linie. ARIMA (0,2,1) oder (0,2,2) ohne konstante lineare Exponentialglättung: Lineare exponentielle Glättungsmodelle sind ARIMA-Modelle, die zwei nicht-sauren Differenzen in Verbindung mit MA-Begriffen verwenden. Die zweite Differenz einer Folge Y ist nicht einfach die Differenz von Y und selbst von zwei Perioden verzögert, sondern sie ist die erste Differenz der ersten Differenz - i. e. Die Änderung in der Änderung von Y in der Periode t. Somit ist die zweite Differenz von Y in der Periode t gleich (Yt - Yt - 1) - (Yt - 1 - Yt - 2) Yt - 2Yt - 1Yt - 2. Eine zweite Differenz einer diskreten Funktion ist analog zu einer zweiten Ableitung einer stetigen Funktion: sie mißt zu einem gegebenen Zeitpunkt die Quota-Beschleunigung quot oder quotvequot in der Funktion. Das ARIMA (0,2,2) - Modell ohne Konstante sagt voraus, daß die zweite Differenz der Reihe eine lineare Funktion der letzten beiden Prognosefehler ist, die umgeordnet werden können: wobei 952 1 und 952 2 die MA (1) und MA (2) Koeffizienten. Dies ist ein allgemeines lineares exponentielles Glättungsmodell. Im Wesentlichen das gleiche wie Holt8217s Modell, und Brown8217s Modell ist ein spezieller Fall. Es verwendet exponentiell gewichtete gleitende Mittelwerte, um sowohl eine lokale Ebene als auch einen lokalen Trend in der Reihe abzuschätzen. Die Langzeitprognosen von diesem Modell konvergieren zu einer Geraden, deren Steigung von dem durchschnittlichen Trend abhängt, der gegen Ende der Reihe beobachtet wird. ARIMA (1,1,2) ohne konstante gedämpfte lineare Exponentialglättung. Dieses Modell ist in den begleitenden Dias auf ARIMA-Modellen dargestellt. Es extrapoliert die lokale Tendenz am Ende der Serie, sondern flacht es auf längere Prognose Horizonte, um eine Notiz von Konservatismus, eine Praxis, die empirische Unterstützung hat einzuführen. Siehe den Artikel auf quotWarum die Damped Trend Werke von Gardner und McKenzie und die quotGolden Rulequot Artikel von Armstrong et al. für Details. Es ist grundsätzlich ratsam, bei Modellen zu bleiben, bei denen mindestens einer von p und q nicht größer als 1 ist, dh nicht versuchen, ein Modell wie ARIMA (2,1,2) anzubringen, da dies zu Überbeanspruchungen führen kann Die in den Anmerkungen zur mathematischen Struktur von ARIMA-Modellen näher erläutert werden. Spreadsheet-Implementierung: ARIMA-Modelle wie die oben beschriebenen lassen sich einfach in einer Tabellenkalkulation implementieren. Die Vorhersagegleichung ist einfach eine lineare Gleichung, die sich auf vergangene Werte von ursprünglichen Zeitreihen und vergangenen Werten der Fehler bezieht. So können Sie eine ARIMA-Prognosekalkulation einrichten, indem Sie die Daten in Spalte A, die Prognoseformel in Spalte B und die Fehler (Daten minus Prognosen) in Spalte C speichern. Die Prognoseformel in einer typischen Zelle in Spalte B wäre einfach Ein linearer Ausdruck, der sich auf Werte in vorhergehenden Zeilen der Spalten A und C bezieht, multipliziert mit den entsprechenden AR - oder MA-Koeffizienten, die in Zellen an anderer Stelle auf dem Spreadsheet gespeichert sind. ETS Exponentielle Glättung in EViews 8 Obwohl Ad-hoc-exponentielle Glättungs (ES) - Methoden verwendet wurden Englisch: bio-pro. de/en/region/biolago/magazi...0/index. html Viele Jahrzehnte haben die jüngsten methodischen Entwicklungen diese Modelle in einem modernen dynamischen nichtlinearen Modellrahmen eingebettet. Hyndman, Koehler, et al. (2002, A State Space Framework für die automatische Prognose unter Verwendung exponentieller Glättungsmethoden, International Journal of Forecasting, 18, 439454.) skizzieren das ETS (E rror-T rend - S easonal oder E xponen T ial S moothing) Klasse von ES-Methoden und bietet eine theoretische Grundlage für die Analyse dieser Modelle mit Hilfe von State-Space-basierten Likelihood-Berechnungen, mit Unterstützung für die Modellauswahl und Berechnung der Prognose Standardfehler. Bemerkenswerterweise umfasst das ETS-Framework die Standard-ES-Modelle (z. B. Holt - und HoltWinters-Additiv und multiplikative Methoden), so dass es eine theoretische Grundlage für das war, was bisher eine Sammlung von Ad-hoc-Ansätzen war. EViews 8 bietet ETS-Exponentialglättung als eingebaute Prozedur. Nachfolgend zeigen wir ein Beispiel für die Verwendung von ETS in EViews. Um die Schätzung und Glättung mit einem ETS-Modell zu veranschaulichen, prognostizieren wir monatliche Wohnungsbeginn (HS) für den Zeitraum 1985m011988m12. Diese Daten werden im workfile hs. wf1 zur Verfügung gestellt. Wir verwenden den multiplikativen Fehler, additive Trend und multiplikative saisonale (M, A, M) - Modell zur Schätzung von Parametern mit Daten von 1959m011984m12 und zu glätten und prognostizieren für 1985m11988m12. Laden Sie zuerst das Workfile, öffnen Sie die HS-Serie und wählen Sie Proc Exponential Smoothing ETS Exponential Smoothing. Ändern Sie die Dropdown-Menüs der Modellspezifikation auf (M, A, M), legen Sie das Schätzmuster auf 1959 1984 oder 1959m01 1984m12 fest, legen Sie den Endpunkt der Prognose auf 1988m04 fest und lassen Sie die übrigen Einstellungen auf die Standardwerte zurück. Wenn Sie auf OK klicken. EViews schätzt das ETS-Modell, zeigt die Ergebnisse an und speichert die geglätteten Ergebnisse in der HSSM-Serie im Workfile. Die Ergebnisse sind in vier Teile unterteilt. Der erste Teil der Tabelle zeigt die Einstellungen in der ETS-Prozedur, einschließlich der Stichprobe für die Schätzung und den Schätzstatus verwendet. Hier sehen wir, dass wir ein (M, A, M) Modell mit Daten von 1959 bis 1984 geschätzt haben und dass der Schätzer konvergiert, aber mit einigen Parametern an Grenzwerten. Der nächste Abschnitt der Tabelle zeigt die Glättungsparameter (,,) und Anfangszustände x 0 (l 0, b 0, s 0, s -1, s -11). Beachten Sie das Vorhandensein der Grenznullwerte für und, die darauf hinweisen, dass sich die Saison - und Trendkomponenten nicht von ihren Anfangswerten ändern. Der untere Teil der Tabellenausgabe enthält Zusammenfassungsstatistiken für das Schätzverfahren: Die meisten dieser Statistiken sind selbsterklärend. Die gemeldete Compact-Log-Likelihood ist einfach der Log-Likelihood-Wert, der keine unwesentlichen Konstanten aufweist, und wird bereitgestellt, um den Vergleich mit Ergebnissen zu erleichtern, die von anderen Quellen erhalten werden. Für Vergleichszwecke kann es nützlich sein, das ETS-Modell zu betrachten, das unter Verwendung der Modellselektion erhalten wird. Um die Modellauswahl durchzuführen, füllen Sie den Dialog wie zuvor aus, aber setzen Sie die Dropdown-Menüs der Modellspezifikation auf Auto. Beachten Sie, dass bei den Standardeinstellungen das beste Modell mit dem Akaike Information Criterion ausgewählt wird. Klicken Sie anschließend auf die Registerkarte Optionen, und legen Sie die Anzeigeoptionen fest, um die Prognose und alle Elemente der Dekomposition in Mehrfachdiagrammen anzuzeigen und um Graphen und Tabellen für die Prognose - und Wahrscheinlichkeitsvergleiche aller Modelle, die von der Modellauswahl berücksichtigt werden, zu erstellen Verfahren. Klicken Sie auf OK, um die Glättung durchzuführen. Da EViews mehrere Arten von Ausgaben für die Prozedur erzeugt, werden die Ergebnisse in einer Spule angezeigt: Im linken Ausgabefenster können Sie die Ausgabe auswählen, die Sie anzeigen möchten. Klicken Sie einfach auf die Ausgabe, die Sie anzeigen möchten, oder verwenden Sie die Bildlaufleiste auf der rechten Seite des Fensters, um von Ausgabe zu Ausgabe zu wechseln. Der Schätzausgang enthält die Spezifikation, die geschätzten Glättungs - und Anfangsparameter sowie die Statistikstatistik. Der obere Teil des Ausgangs zeigt, dass das Akaike-Informationskriterium als ETS-Modell eine (M, N, M) Spezifikation mit einer Pegelglättungsparameter-Schätzung von 0,72 und dem an der Grenze abgeschätzten Saisonparameter 0 ist. Die Zusammenfassungsstatistiken zeigen, dass diese Spezifikation dem früheren Modell (M, A, M) auf der Grundlage aller drei Informationskriterien und des durchschnittlichen quadratischen Fehlers überlegen ist, obwohl die Wahrscheinlichkeit niedriger ist und sowohl SSR als auch RMSE beides sind Im ausgewählten Modell etwas höher. Wenn Sie auf das AIC-Vergleichsdiagramm in der Spule klicken, sehen wir die Ergebnisse für alle Kandidatenmodelle: Beachten Sie, dass das ausgewählte (M, N, M) und das Originalmodell (M, A, M) zu den fünf Spezifikationen mit relativ niedrigem AIC gehören Werte. Der Prognosevergleich zeigt die Prognosen für die Kandidatenmodelle: Die Grafik zeigt sowohl die letzten Beobachtungen von In-Prognosen als auch die Out-of-Sample-Prognosen für jede der möglichen ETS-Spezifikationen. Darüber hinaus produzierten unsere gewählten ETS-Display-Einstellungen sowohl die Likelihood-Tabelle, die die tatsächlichen Wahrscheinlichkeits - und Akaike-Werte für jede Spezifikation enthält, als auch die Prognose-Vergleichstabelle, die eine Untermenge der in der Grafik angezeigten Werte darstellt. Zum Beispiel besteht die Wahrscheinlichkeitstabelle aus Schliesslich enthält die Spule eine Mehrfachkurve, die die tatsächlichen und prognostizierten Werte von HS über den Schätz - und Prognosezeitraum zusammen mit der Zerlegung der Reihe in die Niveau - und Saisonkomponenten enthält. Bitte senden Sie uns Ihre Seriennummer mit allen E-Mail-Korrespondenz. Weitere Kontaktinformationen finden Sie auf unserer Seite.
No comments:
Post a Comment